I.N.RI.M.

ISTITUTO NAZIONALE DI RICERCA METROLOGICA Strada delle Cacce, 91 - 10135 TORINO (Italia)

**** +39 011 3919.1**

+39 011 346384

inrim@inrim.it - www.inrim.it

page 1 of 3

TEST REPORT

N. 11-0659-01 issued on 2011-09-27

Description

Determination of air flow resistance

Model/Type

Materials for acoustical applications

Identification

LASER J

Manifacturer

FIDIVI Tessitura Vergnano S.p.A.

Date of test

2011-09-22

Applied procedure

PT-AC-01-P-11

Laboratory measurement of dynamic stiffness

Laboratory reference

AC-Edil-2011

Customer

FIDIVI Tessitura Vergnano S.p.A.

Address

10046 POIRINO (TO) - Regione Masio, 19/bis

Measured by

(Francesco Russo) (Alessandro Schiavi)

Authorised signatory

(Vito Fernicola)

N. 11-0659-01 issued on 2011-09-27 - page 2 of 3

1. Typology Of MATERIAL

Costumer's description of the materials: Commercial reference: LASER J

Composition: 100 % Polyester Trevira CS

Weight: 525 g/m2 Thickness: 1, 5 mm

2. TEST METHOD

The test method for determining the airflow resistance of porous materials is performed accordingly with ISO 9053/1994 Standard.

The airflow resistance is achieved by generating a slow air flow through the sample and measuring with a microphone the r.m.s. pressure in the volume of the measurement cell delimited by the test specimen.

The alternating volumetric airflow is generated by a piston at a frequency of 2 Hz

Figure 1 shows a diagram of the measurement principle.

The measurement is performed on 3 cylindrical specimens with a diameter of 100 mm. The airflow resistance value declared is the average of the three measured values.

The airflow resistivity, in pascal second per square meter, is given by:

r = AP-A/qv-d

where:

 ΔP is the air pressure difference across the sample with respect to the atmosphere, in Pa;

 q_v is the air flow rate through the sample, in m^3s^{-1} ;

A is the section of the tested sample, in m²;

d is the specimen thickness in the direction of flow, in m.

Checked by: (Andrea Pavoni Belli)

Measurement devices used in test:

The measuring airflow resistance equipment realized at the National Institute of Metrological Research of Turin, characterized by:

- · A cell measurement in aluminium, diameter 100 mm;
- · A perforated plate for the support of material;
- A piston (Teflon ®), diameter 50 mm, led by an eccentric connected to a stepper motor, which
 produces a flow of air, alternating at 2 Hz;
- A condenser microphone (1/2", Brüel and Kjær Type 4191) for the measurement of alternating pressure component in the closed volume of the cell;
- A microphone pre-amplifier (Brüel and Kjær Type 2669);

A measuring amplifier (G.R.A.S. type 12AK);

A spectrum analyser (ONO SOKKI type DS 2100).

3. MEASUREMENT RESULTS

In Table 1 the results of measurement are reported. Expanded uncertainty U is expressed as the standard uncertainty multiplied for the covering factor k = 2; for a normal distribution is a covering probability of about 95%.

Environmental condition during test

Air temperature: 23,7 °C Relative humidity: 39,6 %

Table 1 - LASER J

	Airflow resistivity (kPa -s/m²)	thickness (mm)	Weight (g)	Weight per unit volume (kg/m³)
Specimen 1	445	1,79	4,5	320
Specimen 2	435	1,79	4,5	320
Specimen 3	415	1,79	4,5	320

Checked by: (Andrea Pavoni Belli)